Ad Astra Awards
Ad Astra Journal
Science library
White book
University rankings
Who's who
Publications
Theses and dissertations
Ad Astra association
 
Press releases
News
Events
Funding opportunities
 
Login
Registration
 
>> Românã
 
   
 

Iancu CV, Borza T, Choe JY, Fromm HJ, Honzatko RB. Recombinant mouse muscle adenylosuccinate synthetase: overexpression, kinetics, and crystal structure. Journal of Biological Chemistry, 276(45), pp. 42146-4215, 2001.

Abstract: Vertebrates possess two isozymes of adenylosuccinate synthetase. The acidic isozyme is similar to the synthetase from bacteria and plants, being involved in the de novo biosynthesis of AMP, whereas the basic isozyme participates in the purine nucleotide cycle. Reported here is the first instance of overexpression and crystal structure determination of a basic isozyme of adenylosuccinate synthetase. The recombinant mouse muscle enzyme purified to homogeneity in milligram quantities exhibits a specific activity comparable with that of the rat muscle enzyme isolated from tissue and Km parameters for GTP, IMP, and L-aspartate (12, 45, and 140 M, respectively) similar to those of the enzyme from Escherichia coli. The mouse muscle and E. coli enzymes have similar polypeptide folds, differing primarily in the conformation of loops, involved in substrate recognition and stabilization of the transition state. Residues 6568 of the muscle isozyme adopt a conformation not observed in any previous synthetase structure. In its new conformation, segment 6568 forms intramolecular hydrogen bonds with residues essential for the recognition of IMP and, in fact, sterically excludes IMP from the active site. Observed differences in ligand recognition among adenylosuccinate synthetases may be due in part to conformational variations in the IMP pocket of the ligand-free enzymes.

Keywords: adenylosuccinate synthetase, recombinant protein, crystal structure, IMP

Posted by Tudor Borza

Back

   
© Ad Astra 2001-2013