Premiile Ad Astra
Revista Ad Astra
Biblioteca de știință
Cartea albă
Topul universităților
Who's who
Publicații
Teze și dizertații
Asociația Ad Astra
 
Comunicate
Știri
Evenimente
Oportunități de finanțare
 
Login
Înregistrare
 
>> English
 
   
 

Gabriel Istrate. Sums of continuous and Darboux functions. Real Analysis Exchange, 20 (2), pp. 842-846, 1995.

Rezumat: For interval I and set A, denote by D(I,A) the class of functions from I to R such that:

1. range(f) = A.
2. for every x in A, f^{-1}(x) is dense in I.

Motivated by a result due to Natkaniec and Kircheim (Real Analysis Exchange vol. 16 /1991-92) we show that D(I,A) is a subset of C+D, the class of functions that are the sum of a continuous and a
Darboux function, if and only if set A is an interval.

A preliminary version (called "On a paper by Natkaniec and Kircheim") is available from Citeseer (cached PDF), at

http://citeseer.ist.psu.edu/120021.html

The paper is not yet available online in journal form (it may become so in the future). The URL listed below is that of Real Analysis Exchange on Project Euclid.



Cuvinte cheie: sums of Darboux and continuous functions, real analysis

URL: http://projecteuclid.org/Dienst/UI/1.0/Journal?authority=euclid.rae

Adăugată pe site de Gabriel Istrate

Înapoi

   
© Ad Astra 2001-2013