Ad Astra Awards
Ad Astra Journal
Science library
White book
University rankings
Who's who
Publications
Theses and dissertations
Ad Astra association
 
Press releases
News
Events
Funding opportunities
 
Login
Registration
 
>> Românã
 
   
 

Mariana Belgiu, Lucian Dragut. Random forest in remote sensing: A review of applications and future directions. ISPRS Journal of Photogrammetry and Remote Sensing, 114, pp. 24-31, 2016.

Abstract: A random forest (RF) classifier is an ensemble classifier that produces multiple decision trees, using a randomly selected subset of training samples and variables. This classifier has become popular within the remote sensing community due to the accuracy of its classifications. The overall objective of this work was to review the utilization of RF classifier in remote sensing. This review has revealed that RF classifier can successfully handle high data dimensionality and multicolinearity, being both fast and insensitive to overfitting. It is, however, sensitive to the sampling design. The variable importance (VI) measurement provided by the RF classifier has been extensively exploited in different scenarios, for example to reduce the number of dimensions of hyperspectral data, to identify the most relevant multisource remote sensing and geographic data, and to select the most suitable season to classify particular target classes. Further investigations are required into less commonly exploited uses of this classifier, such as for sample proximity analysis to detect and remove outliers in the training samples.

Keywords: Random forest, Supervised classifier, Ensemble classifier, Review, Feature selection

URL: http://www.sciencedirect.com/science/article/pii/S0924271616000265

Posted by Lucian Dragut

Back

   
© Ad Astra 2001-2013