Ad Astra Awards
Ad Astra Journal
Science library
White book
University rankings
Who's who
Theses and dissertations
Ad Astra association
Press releases
Funding opportunities
>> Românã

Ágoston Róth. Control point based exact description of trigonometric/hyperbolic curves, surfaces and volumes. Journal of Computational and Applied Mathematics, 290(C), pp. 74-91, 2015.

Abstract: Using the normalized B-bases of vector spaces of trigonometric and hyperbolic polynomials of finite order, we specify control point configurations for the exact description of the zeroth and higher order (mixed partial) derivatives of integral curves and (hybrid) multivariate surfaces determined by coordinate functions that are exclusively given either by traditional trigonometric or hyperbolic polynomials in each of their variables. Based on homogeneous coordinates and central projection, we also propose algorithms for the control point and weight based exact description of the zeroth order (partial) derivative of the rational counterpart of these integral curves and surfaces. The core of the proposed modeling methods relies on basis transformation matrices with entries that can be efficiently obtained by order elevation.

Keywords: Trigonometric and hyperbolic polynomials, Curves and multivariate surfaces, Normalized B-basis functions, Basis transformation, Order elevation, Subdivision


Posted by Ágoston Róth


© Ad Astra 2001-2013