Ad Astra Awards
Ad Astra Journal
Science library
White book
University rankings
Who's who
Publications
Theses and dissertations
Ad Astra association
 
Press releases
News
Events
Funding opportunities
 
Login
Registration
 
>> Românã
 
   
 

Shanghao Li, Lingyu Wang, Charles C. Chusuei, Valentina M. Suarez, Patrica L. Blackwelder, Miodrag Micic, Jhony Orbulescu and Roger M. Leblanc. Nontoxic Carbon Dots Potently Inhibit Human Insulin Fibrillation. Chemistry of Materials, 27 (5), p. 1764–1771, 2015.

Abstract: One prevention and therapeutic strategy for diseases associated with peptide or protein fibrillation is to inhibit or delay the fibrillation process. Carbon dots (C–Dots) have recently emerged as benign nanoparticles to replace toxic quantum dots and have attracted great attention because of their unique optical properties and potential applications in biological systems. However, the effect of C-Dots on peptide or protein fibrillation has not been explored. In this in vitro study, human insulin was selected as a model to investigate the effect of C-Dots on insulin fibrillation. Water-soluble fluorescent C-Dots with sizes less than 6 nm were prepared from carbon powder and characterized by UV–vis spectroscopy, fluorescence, Fourier transform infrared spectrophotometry, X-ray photoelectron spectrometry, transmission electron microscopy, and atomic force microscopy. These C-Dots were able to efficiently inhibit insulin fibrillation in a concentration-dependent manner. The inhibiting effect of C-Dots was even observed at 0.2 μg/mL. Importantly, 40 μg/mL of C-Dots prevent 0.2 mg/mL of human insulin from fibrillation for 5 days under 65 °C, whereas insulin denatures in 3 h under the same conditions without C-Dots. The inhibiting effect is likely due to the interaction between C-Dots and insulin species before elongation. Cytotoxicity study shows that these C-Dots have very low cytotoxicity. Therefore, these C-Dots have the potential to inhibit insulin fibrillation in biological systems and in the pharmaceutical industry for the processing and formulation of insulin.

Keywords: C-dots, carbon dots, human insulin, fibrillation, fluorescence, AFM

URL: http://pubs.acs.org/doi/abs/10.1021/cm504572b

Posted by Jhony Orbulescu

Back

   
© Ad Astra 2001-2013