Ad Astra Awards
Ad Astra Journal
Science library
White book
University rankings
Who's who
Theses and dissertations
Ad Astra association
Press releases
Funding opportunities
>> Românã

Petrisor AI, Szyjka S, Kawaguchi T, Visscher PT, Norman RS, Decho AW. Changing Microspatial Patterns of Sulfate-Reducing Microorganisms (SRM) during Cycling of Marine Stromatolite Mats. International Journal of Molecular Sciences, 15(1), pp. 850-877, 2014.

Abstract: Microspatial arrangements of sulfate-reducing microorganisms (SRM) in surface microbial mats (~1.5 mm) forming open marine stromatolites were investigated. Previous research revealed three different mat types associated with these stromatolites, each with a unique petrographic signature. Here we focused on comparing "non-lithifying" (Type-1) and "lithifying" (Type-2) mats. Our results revealed three major trends: (1) Molecular typing using the dsrA probe revealed a shift in the SRM community composition between Type-1 and Type-2 mats. Fluorescence in-situ hybridization (FISH) coupled to confocal scanning-laser microscopy (CSLM)-based image analyses, and 35SO42-silver foil patterns showed that SRM were present in surfaces of both mat types, but in significantly (p < 0.05) higher abundances in Type-2 mats. Over 85% of SRM cells in the top 0.5 mm of Type-2 mats were contained in a dense 130 &#181;m thick horizontal layer comprised of clusters of varying sizes; (2) Microspatial mapping revealed that locations of SRM and CaCO3 precipitation were significantly correlated (p < 0.05); (3) Extracts from Type-2 mats contained acylhomoserine-lactones (C4- ,C6- ,oxo-C6,C7- ,C8- ,C10- ,C12- , C14-AHLs) involved in cell-cell communication. Similar AHLs were produced by SRM mat-isolates. These trends suggest that development of a microspatially-organized SRM community is closely-associated with the hallmark transition of stromatolite surface mats from a non-lithifying to a lithifying state.

Keywords: biofilms, EPS, microbial mats, microspatial, sulfate-reducing microorganisms, dsrA probe, chemical signals, CaCO3, AHLs, 35SO42&#8722; silver-foil


Posted by Alexandru-Ionut Petrisor


© Ad Astra 2001-2013